Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations

نویسندگان

  • Jon Lawrence
  • Joss Bland-Hawthorn
  • Nick Cvetojevic
  • Roger Haynes
  • Nemanja Jovanovic
چکیده

The size of the optical elements (gratings, mirrors, lenses) in traditional astronomical spectrographs scales with telescope diameter (unless the instrument is operating at the diffraction limit). For large telescopes, this leads to spectrographs of enormous size and implied cost. The integrated photonic spectrograph offers the potential to break this scaling law and allow massively multiplexed instruments. One proposed format for such a spectrograph recently demonstrated on-sky employs the arrayed-waveguide grating, which creates dispersion using interference between a series of waveguides with precisely defined length increments. Arrayed-waveguide gratings fabricated via planar techniques are used extensively in the telecommunications industry as optical (de)multiplexers. Current commercial devices are not directly applicable for astronomical use, and several design modifications are thus required. Here we investigate the potential capabilities and limitations of arrayed-waveguide grating technology to provide massively multiplexed spectroscopy for astronomy. In particular, we examine the dependence of the arrayed-waveguide grating design parameters (such as focal length, device order, array spacing, array length increment, refractive index contrast, chip size, number and structure of input modes, and configuration of output imaging or cross-dispersive optics) on the characteristics of the device output (operating wavelength, free spectral range, spectral resolution, multiplexing capacity, and number of required detector pixels).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miniature Spectrographs: Characterization of Arrayed Waveguide Gratings for Astronomy

We present results from a laboratory characterization of integrated photonic arrayed-waveguide grating chips, which are a modified version of commercial arrayed-waveguide grating multiplexors, for the purposes of creating an integrated photonic spectrograph. Using a robust probing setup we measure the peak total efficiency of the chips to be ~75%. We measure the spectral resolution full-width h...

متن کامل

High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges

A comprehensive design of a folded-architecture arrayed-waveguide-grating (AWG)-device, targeted at applications as integrated photonic spectrographs (IPS) in near-infrared astronomy, is presented. The AWG structure is designed for the astronomical H-band (1500 nm–1800 nm) with a theoretical maximum resolving power R = 60,000 at 1630 nm. The geometry of the device is optimized for a compact str...

متن کامل

Design of Arrayed Waveguide Grating based Optical Switch for High Speed Optical Networks

This paper demonstrates the design of an Arrayed Waveguide Gratings (AWG) based optical switch. In the design both physical and network layer analysis is performed. The physical layer power and noise analysis is done to obtain Bit Error Rate (BER). This has been found that at the higher bit rates, BER is not affected with number of buffer modules. Network layer analysis is done to obtain perfor...

متن کامل

Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results

Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resolving power of ⇠3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low c...

متن کامل

Arrayed Waveguide Gratings and Their Application Using Super-High-Delta Silica-Based Planar Lightwave Circuit Technology

This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010